179 research outputs found

    Cascaded convolutional codes

    Get PDF
    Due to the hardware design of Galileo's Command and Data Subsystem (CDS), the channel code usable in an S-band (2290-2300 MHz) mission must include the NASA standard (7,1/2) convolutional code. Galileo's hardware encoder for the (15,1/4) code is not usable in S-band mode. However, the need for higher coding gain dictates the use of long constraint length convolutional codes. Theoretical results show how a large subclass of such codes is realizable by using a software encoder in the CDS cascaded with the hardware encoder for the NASA standard code

    The use of interleaving for reducing radio loss in trellis-coded modulation systems

    Get PDF
    It is demonstrated how the use of interleaving/deinterleaving in trellis-coded modulation (TCM) systems can reduce the signal-to-noise ratio loss due to imperfect carrier demodulation references. Both the discrete carrier (phase-locked loop) and suppressed carrier (Costas loop) cases are considered and the differences between the two are clearly demonstrated by numerical results. These results are of great importance for future communication links to the Deep Space Network (DSN), especially from high Earth orbiters, which may be bandwidth limited

    Orienteering problem with hotel selection: a variable neighborhood search method

    Get PDF
    In this research, we developed a skewed variable neighbourhood search algorithm to solve the orienteering problem (OP) with hotel selection, a non-investigated variant of the OP. We also designed two appropriate sets of benchmark instances with known optimal solutions. Applying the proposed algorithm on these instances shows the quality of the algorithm. The algorithm is also fast enough to be implemented in a tourist application

    Performance of concatenated Reed-Solomon/Viterbi channel coding

    Get PDF
    The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance

    Multiple symbol partially coherent detection of MPSK

    Get PDF
    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations

    Combined trellis coding with asymmetric MPSK modulation: An MSAT-X report

    Get PDF
    Traditionally symmetric, multiple phase-shift-keyed (MPSK) signal constellations, i.e., those with uniformly spaced signal points around the circle, have been used for both uncoded and coded systems. Although symmetric MPSK signal constellations are optimum for systems with no coding, the same is not necessarily true for coded systems. This appears to show that by designing the signal constellations to be asymmetric, one can, in many instances, obtain a significant performance improvement over the traditional symmetric MPSK constellations combined with trellis coding. The joint design of n/(n + 1) trellis codes and asymmetric 2 sup n + 1 - point MPSK is considered, which has a unity bandwidth expansion relative to uncoded 2 sup n-point symmetric MPSK. The asymptotic performance gains due to coding and asymmetry are evaluated in terms of the minimum free Euclidean distance free of the trellis. A comparison of the maximum value of this performance measure with the minimum distance d sub min of the uncoded system is an indication of the maximum reduction in required E sub b/N sub O that can be achieved for arbitrarily small system bit-error rates. It is to be emphasized that the introduction of asymmetry into the signal set does not effect the bandwidth of power requirements of the system; hence, the above-mentioned improvements in performance come at little or no cost. MPSK signal sets in coded systems appear in the work of Divsalar

    A proposed technique for the Venus balloon telemetry and Doppler frequency recovery

    Get PDF
    A technique is proposed to accurately estimate the Doppler frequency and demodulate the digitally encoded telemetry signal that contains the measurements from balloon instruments. Since the data are prerecorded, one can take advantage of noncausal estimators that are both simpler and more computationally efficient than the usual closed-loop or real-time estimators for signal detection and carrier tracking. Algorithms for carrier frequency estimation subcarrier demodulation, bit and frame synchronization are described. A Viterbi decoder algorithm using a branch indexing technique has been devised to decode constraint length 6, rate 1/2 convolutional code that is being used by the balloon transmitter. These algorithms are memory efficient and can be implemented on microcomputer systems

    Multiple Trellis Coded Modulation (MTCM): An MSAT-X report

    Get PDF
    Conventional trellis coding outputs one channel symbol per trellis branch. The notion of multiple trellis coding is introduced wherein more than one channel symbol per trellis branch is transmitted. It is shown that the combination of multiple trellis coding with M-ary modulation yields a performance gain with symmetric signal set comparable to that previously achieved only with signal constellation asymmetry. The advantage of multiple trellis coding over the conventional trellis coded asymmetric modulation technique is that the potential for code catastrophe associated with the latter has been eliminated with no additional cost in complexity (as measured by the number of states in the trellis diagram)
    corecore